Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
Open Life Sci ; 19(1): 20220812, 2024.
Article En | MEDLINE | ID: mdl-38465338

Henoch-Schönlein purpura (HSP) and pediatric-onset systemic lupus erythematosus (pSLE) are closely associated with vasculitis and vascular diseases. This study aimed to investigate the clinical diagnostic values of Ang-1, Ang-2, and Tie2 for HSP and pSLE. We surveyed 82 HSP patients, 34 pSLE patients, and 10 healthy children. The expression levels of Ang-1, Ang-2, and Tie2 in the serum and urine were assessed using enzyme-linked immunosorbent assay. The diagnostic values of Ang-1, Ang-2, and Tie2 for HSP and pSLE were evaluated using receiver operating characteristic curve analysis. The results revealed that the serum and urine expression levels of Ang-2 and Tie2 were significantly elevated in HSP and pSLE patients, whereas the Ang-1/Ang-2 values were reduced. Additionally, Ang-1 was highly expressed in the serum and urine of HSP patients and in the serum of pSLE patients. Ang-1, Ang-2, and Tie2 showed differential expression in various types of HSP and pSLE compared with their expression in healthy controls. In summary, Ang-1, Ang-2, and Tie2 can serve as biomarkers for HSP and pSLE. Moreover, Ang-1/Ang-2 values are reduced in HSP and pSLE patients. Ang-1, Ang-2, and Tie2 can be used as biomarkers for HSP and pSLE.

2.
Inorg Chem ; 62(28): 11233-11239, 2023 Jul 17.
Article En | MEDLINE | ID: mdl-37409591

Developing economical, efficient, and durable oxygen evolution catalysts is crucial for achieving sustainable energy conversion and storage. Ruddlesden-Popper-type perovskite oxides are at the forefront of oxygen evolution reaction (OER) research. However, their activity and stability are far from satisfactory. Therefore, we emphasize the paradigm shift in designing efficient perovskite-type OER catalysts through anion defect engineering. The Cl anion-doped A2BO4-type perovskite oxides, SrLaCoO4-xClx (SLCOClx), were employed as highly efficient OER catalysts, wherein Cl could tune the electronic structure of SrLaCoO4 (SLCO) to enhance the OER activity effectively. Especially, SLCOCl0.15 demonstrates significantly enhanced OER activity, and the overpotential is only 370 mV at 10 mA·cm-2, which is significantly better than that of SLCO (510 mV). As confirmed by experience results and density functional theory (DFT) calculation, due to the doping of Cl, obviously increasing the ratio of Co2+/Co3+, more abundant oxygen vacancies (O22-/O-) are generated, and the electrical conductivity is increased, which together promote the improvement of OER activity.

3.
Front Pharmacol ; 14: 1092748, 2023.
Article En | MEDLINE | ID: mdl-36744267

Background: Since late February 2022, a wave of coronavirus disease 2019 (COVID-19) mainly caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant rapidly appeared in Shanghai, China. Traditional Chinese medicine treatment is recommended for pediatric patients; however, the safety and efficacy remain to be confirmed. We conducted a single-center, open-label, parallel-group randomized controlled trial to assess the efficacy and safety of a Chinese herb compound, Huashi Baidu granule (HSBDG) in pediatric patients with laboratory-confirmed mild COVID-19. Methods: 108 recruited children (aged 3-18 years) with laboratory-confirmed mild COVID-19 were randomly allocated 2:1 to receive oral HSBDG for five consecutive days (intervention group) and to receive compound pholcodine oral solution for five consecutive days (control group). The negative conversion time of SARS-CoV-2 nucleic acid and symptom scores were recorded. Results: The median negative conversion time of SARS-CoV-2 nucleic acid was significantly shorter in the intervention group than in the control group (median days [interquartile range (IQR)]: 3 [3-5] vs. 5 [3-6]; p = 0.047). The median total symptom score on day 3 was significantly lower in the intervention group than in the control group (median total symptom score [IQR]: 1 [0-2] vs. 2 [0-3]; p = 0.036). There was no significant differences in the frequency of antibiotic use and side effects between the two groups. Conclusion: HSBDG is a safe, effective oral Chinese herbal compound granule, which shows a good performance within the Omicron wave among pediatric patients.

4.
IEEE Trans Biomed Circuits Syst ; 16(5): 867-881, 2022 10.
Article En | MEDLINE | ID: mdl-36070274

It has proved that the auscultation of respiratory sound has advantage in early respiratory diagnosis. Various methods have been raised to perform automatic respiratory sound analysis to reduce subjective diagnosis and physicians' workload. However, these methods highly rely on the quality of respiratory sound database. In this work, we have developed the first open-access paediatric respiratory sound database, SPRSound. The database consists of 2,683 records and 9,089 respiratory sound events from 292 participants. Accurate label is important to achieve a good prediction for adventitious respiratory sound classification problem. A custom-made sound label annotation software (SoundAnn) has been developed to perform sound editing, sound annotation, and quality assurance evaluation. A team of 11 experienced paediatric physicians is involved in the entire process to establish golden standard reference for the dataset. To verify the robustness and accuracy of the classification model, we have investigated the effects of different feature extraction methods and machine learning classifiers on the classification performance of our dataset. As such, we have achieved a score of 75.22%, 61.57%, 56.71%, and 37.84% for the four different classification challenges at the event level and record level.


Algorithms , Respiratory Sounds , Humans , Child , Auscultation , Machine Learning , Databases, Factual
5.
Sci Total Environ ; 829: 154637, 2022 Jul 10.
Article En | MEDLINE | ID: mdl-35307418

The toxicity of pyrene (Pyr) and its chlorinated species have not be comprehensively and clearly elucidated. In this study, an integrated approach of metabolomics and transcriptomics were applied to evaluate the hepatotoxicity of Pyr and 1-chloropyrene (1-Cl-Pyr) at human exposure level, using human L02 hepatocytes. After 24 h exposure to Pyr and 1-Cl-Pyr at 5-500 nM, cell viability was not significantly changed. Transcriptomics results showed that exposure to Pyr and 1-Cl-Pyr at 5 and 50 nM obviously altered the gene expression profiles, but did not significantly induce the expression of genes strongly related to the activation of aryl hydrocarbon receptor (AhR), such as CYP1A1, CYP1B1, AHR, ARNT. Pyr and 1-Cl-Pyr both induced a notable metabolic perturbation to L02 cells. Glycerophospholipid metabolism was found to be the most significantly perturbed pathway after exposure to Pyr and 1-Cl-Pyr, indicating their potential damage to the cell membrane. The other significantly perturbed pathways were identified to be oxidative phosphorylation (OXPHOS), glycolysis, and fatty acid ß oxidation, all of which are related to energy production. Exposure to Pyr at 5 and 50 nM induced the up-regulation of fatty acid ß oxidation and OXPHOS. The similar result was observed after exposure to 5 nM 1-Cl-Pyr. In contrast, exposure to 50 nM 1-Cl-Pyr induced the down-regulation of OXPHOS by inhibiting the activity of complex I. The obtained results suggested that the modes of action of Pyr and 1-Cl-Pyr on energy production remarkably varied not only with molecular structure change but also with exposure concentration.


Chemical and Drug Induced Liver Injury , Polycyclic Aromatic Hydrocarbons , Cytochrome P-450 CYP1A1/metabolism , Fatty Acids/toxicity , Humans , Metabolomics , Polycyclic Aromatic Hydrocarbons/toxicity , Pyrenes/toxicity , Receptors, Aryl Hydrocarbon/metabolism , Transcriptome
6.
Environ Pollut ; 297: 118794, 2022 Mar 15.
Article En | MEDLINE | ID: mdl-34998892

Breast milk samples were collected from 51 mothers in a seaside city Dalian, where the residents usually have higher dietary exposure to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) due to the larger consumption of seafood. The lipid-basis concentrations of ∑Cl2-8DD/Fs, ∑Cl2-10Bs, and total toxicity equivalent (WHO-TEQ) were measured to be in the ranges of 35.7-2727.8 pg/g, 4.91-52.64 ng/g, and 2.27-36.30 pg/g, respectively. The average proportion of ∑Cl2-3DD/Fs was higher than that of ∑Cl4-7DD/Fs in the collected human breast milk samples, suggesting that the health risk of Cl2-3DD/Fs should be especially concerned. The concentration data of PCDD/Fs and PCBs in human breast milk essentially followed a positive skew probability distribution. Women in high-level exposure scenarios exhibited a higher potential to accumulate homologues Cl4DFs, Cl7DFs, Cl8DF, and Cl6Bs in breast milk. Three PCDD/F congeners (1,2,3,6,7,8-Cl6DF, 1,2,3,4,7,8-Cl6DF, and 1,2,3,4,6,7,8-Cl7DD) and three PCB congeners (PCB 126, PCB 138, and PCB 169) were identified as good indicators for the accumulation of PCDD/Fs and PCBs in human breast milk, respectively. The food-to-milk accumulation factors (FMAF) were calculated to evaluate the accumulation potentials of different PCDD/F and PCB congeners in human breast milk via dietary exposure. The calculated FMAF value presented a non-monotonic variation with the logarithm of n-octanol-water partition coefficient (log KOW) with a peak at a log KOW value of about 7.3 and a valley at a log KOW value of about 8. The mean value of the estimated daily intake (EDI) of total WHO-TEQ for breast-fed infants in Dalian, predicted by Monte Carlo simulation, was 10 folds higher than the upper range of the tolerable daily intake (TDI) value (4 pg WHO-TEQ/kg bw/d), suggesting continued and enhanced efforts should be made to reduce the exposure risk of infants to PCDD/Fs and PCBs.


Benzofurans , Polychlorinated Biphenyls , Polychlorinated Dibenzodioxins , Benzofurans/analysis , Dibenzofurans , Dibenzofurans, Polychlorinated , Female , Humans , Infant , Milk, Human/chemistry , Polychlorinated Biphenyls/analysis , Polychlorinated Dibenzodioxins/analysis
7.
J Hazard Mater ; 424(Pt C): 127573, 2022 02 15.
Article En | MEDLINE | ID: mdl-34753055

Atmospheric fine particle pollution is known to cause many adverse health effects. However, the potential mechanisms of PM2.5-induced cytotoxicity still needs further understanding. Herein, we integrated cytotoxicity, component profiling, metabolomics and proteomics data to deeply explain the biological responses of human bronchial epithelial cells exposed to PM2.5. We observed that PM2.5 caused cell cycle arrest, calcium influx, cell damage and further induced cell apoptosis. The contents of heavy metals and 4-6 rings PAHs in PM2.5 were positively correlated with intracellular ROS, indicating that they might be the important components to induce the above cytotoxicity. Integrated metabolomics and proteomics analysis revealed the significant alterations of many metabolic processes, such as glycolysis, the citric acid cycle, amino acid metabolism and lipid metabolism. Notably, we found that PM2.5 inhibited the integrin signaling pathway, including down-regulating the protein expression of integrins and the phosphorylation of downstream signaling kinases, which might ultimately affect cell cycle progression, cell metabolism and apoptosis. This study provided a comprehensive data resource for the deep understanding of biological toxicity mechanisms caused by atmospheric fine particles in human lung-bronchial epithelium cells.


Air Pollutants , Particulate Matter , Air Pollutants/analysis , Air Pollutants/toxicity , Epithelial Cells , Humans , Integrins , Particulate Matter/analysis , Particulate Matter/toxicity , Signal Transduction
8.
Sci Total Environ ; 812: 152242, 2022 Mar 15.
Article En | MEDLINE | ID: mdl-34919925

The toxicological information of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs), as derivatives of PAHs, is still relatively lacking. In this study, a combination of transcriptomics and metabolomics approach was adopted to explore the changes in toxicity to human L02 hepatocytes after chlorination of benzo[a]pyrene (B[a]P) at 6 position. In general, 6-Cl-B[a]P produced a stronger toxicity to human hepatic cells than did parent B[a]P. When exposure concentrations were 5 and 50 nM, 6-Cl-B[a]P caused a weaker transcriptomic perturbation relative to B[a]P, whereas a stronger metabolomic perturbation, a stronger oxidative stress and a stronger inhibition effect on cell viability were caused by 6-Cl-B[a]P than did parent B[a]P. Pathway enrichment analysis indicated that 6-Cl-B[a]P produced a more widely perturbation to metabolic pathways than did B[a]P. Although they both significantly impaired the function of mitochondrial electron transport chain (ETC), the exact mechanism is different. B[a]P suppressed the expression of 20 genes regulating mitochondrial ETC mainly via AhR activation. However, 6-Cl-B[a]P produced a stronger inhibition on the activities of complexes I and V than did B[a]P. Meanwhile, 6-Cl-B[a]P also exhibited a stronger inhibition effect on mitochondrial ß oxidation of fatty acid. Furthermore, 6-Cl-B[a]P and B[a]P both significantly disturbed the nucleotide metabolism, glycerophospholipid metabolism and amino acid metabolism in L02 cells.


Benzo(a)pyrene , Polycyclic Aromatic Hydrocarbons , Benzo(a)pyrene/toxicity , Hepatocytes , Humans , Metabolomics , Transcriptome
9.
Huan Jing Ke Xue ; 42(11): 5519-5525, 2021 Nov 08.
Article Zh | MEDLINE | ID: mdl-34708991

The levels of six toxic metals and five essential metals in five groups of vegetables marketed in the eastern coastal region of China were analyzed using inductively coupled plasma mass spectrometry. The results showed that the concentrations of six toxic heavy metals in all the vegetables did not exceed the maximum residue limits. The health risk assessment indicated that consumption of vegetables may not pose a potential noncarcinogenic risk to consumers, while there is a carcinogenic risk level of 10-5 level from inorganic arsenic exposure through vegetable consumption. Additionally, a similar trend was observed for the accumulation of toxic and essential metals. Furthermore, compared with other vegetable groups, edible fungi have a high potential to accumulate toxic and essential metals, which indicates that pollution monitoring of edible fungi should be strengthened.


Metals, Heavy , Soil Pollutants , China , Dietary Exposure , Environmental Monitoring , Metals, Heavy/analysis , Risk Assessment , Soil Pollutants/analysis , Vegetables
10.
Anal Methods ; 12(19): 2491-2498, 2020 05 21.
Article En | MEDLINE | ID: mdl-32930239

With the wide application of cell metabolomics in many research areas, there is a need to develop an effective procedure for adherent mammalian cell metabolomics that allows for accurate determination of intracellular metabolite levels and easy comparison between multiple studies of a similar application. Here we aimed to compare the efficiencies of different cell harvesting methods and metabolite extraction methods in sample preparation procedures, and to provide a cell sample processing protocol which focuses on maximizing metabolite recovery ranging from polar to lipidic ones. A systematical evaluation of 4 cell harvesting methods and 4 extraction methods was conducted based on human hepatoma HepG2 cells. The impact of different methods on the recoveries of 11 different categories of metabolites was further investigated. The water disruption sample harvesting method provided superior performance to the other 3 harvesting methods, trypsinization, scraping in phosphate buffered saline, and direct solvent scraping, with respect to the recoveries of polar metabolites and lipids. Among the 4 extraction methods, the novel two-phase solvent system extraction method with both methyl tert-butyl ether (MTBE) and 75% 9 : 1 methanol : chloroform showed an absolute advantage with high extraction efficiency for global metabolomics. We showed a metabolite-specific impact of the harvesting method and extraction method on metabolite concentrations. The water disruption sample collection combined with novel two-phase solvent system extraction enabled simultaneous profiling of lipids and metabolites with mixed polarity for sample preparation. Our approach may open up new perspectives toward large-scale comprehensive metabolomic analyses of adherent mammalian cell samples.


Metabolomics , Methanol , Animals , Chloroform , Humans , Solvents , Water
11.
Sci Total Environ ; 685: 297-307, 2019 Oct 01.
Article En | MEDLINE | ID: mdl-31176216

With the phasing out of short-chain chlorinated paraffins (SCCPs), the production and emissions of medium- and long-chain chlorinated paraffins (MCCPs and LCCPs) are expected to increase. In this study, cell viability assay and pseudotargeted metabolomics approach were adopted to define and compare the toxic effects induced by SCCPs, MCCPs and LCCPs. The dose response curves indicated that three CP mixtures with comparable chlorine contents produced similar inhibitory effects on cell viability. At exposure concentration of 100 µg/L, three CP mixtures all induced significant increases in levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and a significant reduction in level of adenosine triphosphate production (ATP), and produced similar impact intensities on overall metabolism. A stronger perturbation in phospholipid and fatty acid metabolism was observed in all CP exposure groups. In comparison with SCCPs and MCCPs, LCCPs produced a stronger suppressive effect on amino acid transport across cell membrane and induced an opposite effect on purine metabolism. Furthermore, the toxicity mechanism and possible health risks of the three types of CPs were discussed. MCCPs shared the most similar cytotoxicity and metabolic perturbation with SCCPs, suggesting that there should be concern about using MCCPs as alternatives to SCCPs.


Cell Survival/drug effects , Hazardous Substances/toxicity , Paraffin/toxicity , Toxicity Tests
12.
Environ Pollut ; 234: 572-580, 2018 Mar.
Article En | MEDLINE | ID: mdl-29223814

The combined toxicity of mixed chemicals is usually evaluated according to several specific endpoints, and other potentially toxic effects are disregarded. In this study, we provided a metabolomics strategy to achieve a comprehensive understanding of toxicological interactions between mixed chemicals on metabolism. The metabolic changes were quantified by a pseudotargeted analysis, and the types of combined effects were quantitatively discriminated according to the calculation of metabolic effect level index (MELI). The metabolomics strategy was used to assess the combined effects of polycyclic aromatic hydrocarbons (PAHs) and short-chain chlorinated paraffins (SCCPs) on the metabolism of human hepatoma HepG2 cells. Our data suggested that exposure to a combination of PAHs and SCCPs at human internal exposure levels could result in an additive effect on the overall metabolism, whereas diverse joint effects were observed on various metabolic pathways. The combined exposure could induce a synergistic up-regulation of phospholipid metabolism, an additive up-regulation of fatty acid metabolism, an additive down-regulation of tricarboxylic acid cycle and glycolysis, and an antagonistic effect on purine metabolism. SCCPs in the mixture acted as the primary driver for the acceleration of phospholipid and fatty acid metabolism. Lipid metabolism disorder caused by exposure to a combination of PAHs and SCCPs should be an important concern for human health.


Cells/drug effects , Paraffin/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Cells/metabolism , Environmental Monitoring , Fatty Acids/metabolism , Hep G2 Cells , Humans , Hydrocarbons, Chlorinated/analysis , Metabolic Networks and Pathways/drug effects , Metabolomics , Paraffin/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Purines/metabolism
13.
Sci Rep ; 7(1): 1584, 2017 05 08.
Article En | MEDLINE | ID: mdl-28484217

Graphene oxide (GO) was rarely used as microwave absorption (MA) material due to its lower dielectric loss compared with reduced GO (RGO). However, the characteristics of low conductivity, light weight, and large surface area were beneficial to the impedance matching for absorbers already containing highly conductive metal materials. Cu@Ni nanowires are promising MA materials due to the desired dielectric loss from copper and excellent magnetic loss from nickel. However, the high density was an impediment to its further application. Combining Cu@Ni nanowires with GO should be an effective solution to decrease the absorber's density and improve its MA properties. Herein, we demonstrated that Cu@Ni nanowires/GO composites exhibited enhanced MA capacities compared with Cu@Ni nanowires or GO alone, and the minimum reflection loss reached -42.8 dB at 16.9 GHz with a thickness of 2.1 mm. The enhanced MA performance mainly originated from good impedance matching, as a result of the addition of low conductivity of GO. To confirm this point, the MA performance of Cu@Ni nanowires/RGO was studied, and unsurprisingly, weak MA performance was obtained. Our work provides a new strategy to decrease the density, broaden the frequency band and tune MA performance of composites.

14.
Nanotechnology ; 27(12): 125602, 2016 Mar 29.
Article En | MEDLINE | ID: mdl-26890585

Copper is a good dielectric loss material but has low stability, whereas nickel is a good magnetic loss material and is corrosion resistant but with low conductivity, therefore Cu-Ni hybrid nanostructures have synergistic advantages as microwave absorption (MA) materials. Different Cu/Ni molar ratios of bimetallic nanowires (Cu13@Ni7, Cu5@Ni5 and Cu7@Ni13) and nanospheres (Cu13@Ni7, Cu5@Ni5 and Cu1@Ni3) have been successfully synthesized via facile reduction of hydrazine under similar reaction conditions, and the morphology can be easily tuned by varying the feed ratio or the complexing agent. Apart from the concentrations of Cu(2+) and Ni(2+), the reduction parameters are similar for all samples to confirm the effects of the Cu/Ni molar ratio and morphology on MA properties. Ni is incorporated into the Cu-Ni nanomaterials as a shell over the Cu core at low temperature, as proved by XRD, SEM, TEM and XPS. Through the complex relative permittivity and permeability, reflection loss was evaluated, which revealed that the MA capacity greatly depended on the Cu/Ni molar ratio and morphology. For Cu@Ni nanowires, as the molar ratio of Ni shell increased the MA properties decreased accordingly. However, for Cu@Ni nanospheres, the opposite trend was found, that is, as the molar ratio of the Ni shell increased the MA properties increased.

15.
Environ Sci Technol ; 50(6): 3145-53, 2016 Mar 15.
Article En | MEDLINE | ID: mdl-26876804

The toxic effects of hexabromocyclododecane (HBCD) are complex, and the underlying toxicological mechanisms are still not completely understood. In this study, a pseudotargeted metabolomic approach based on the UHPLC/Q-Trap MS system was developed to assess the HBCD-intervention-related metabolic alteration in HepG2 cells. In addition, some physiologic indicators and relevant enzyme activities were measured. HBCD exposure obviously impaired metabolic homeostasis and induced oxidative stress, even at an environmentally relevant dose (0.05 mg/L). Metabolic profiling and multivariate analysis indicated that the main metabolic pathways perturbed by HBCD included amino acid metabolism, protein biosynthesis, fatty acid metabolism, and phospholipid metabolism. HBCD suppressed the cell uptake of amino acids, mainly through inhibition of the activity of membrane transport protein Na(+)/K(+)-ATPase. HBCD down-regulated glycolysis and ß-oxidation of long-chain fatty acids, causing a large decrease of ATP production. As a result, the across-membrane transport of amino acids was further inhibited. Meanwhile, HBCD induced a significant increase of total phospholipids, mainly through the remodeling of phospholipids from the increased free fatty acids. The obtained metabolomic results also provided some new evidence and clues regarding the toxicological mechanisms of HBCD that contribute to obesity, diabetes, nervous system damage, and developmental disorders.


Hydrocarbons, Brominated/toxicity , Metabolomics/methods , Chromatography, High Pressure Liquid , Fatty Acids/metabolism , Flame Retardants/toxicity , Hep G2 Cells , Homeostasis/drug effects , Humans , Lipid Metabolism/drug effects , Mass Spectrometry/methods , Metabolic Networks and Pathways , Metabolomics/instrumentation , Obesity/chemically induced , Obesity/metabolism , Oxidative Stress/drug effects , Phospholipids/metabolism
16.
Chemosphere ; 145: 106-11, 2016 Feb.
Article En | MEDLINE | ID: mdl-26688245

Short-chain chlorinated paraffins (SCCPs) have attracted considerable attention for their characteristic of persistent organic pollutants. However, very limited information is available for their toxicokinetic characteristics, limiting the evaluation of their health risks. In this study, we performed a toxicokinetics study to explore the absorption and excretion processes of SCCPs (a mixture of C10-, C11-, C12- and C13-CPs) after a single oral administration to the Sprague-Dawley rats. The toxicokinetic results showed that peak blood concentration of total SCCPs was attained at 2.8 day with Cmax value of 2.3 mg L(-1). The half-lives of total SCCPs in blood for the absorption t1/2 (ka), distribution t1/2 (α) and elimination phases t1/2 (ß) were calculated to be 1.0, 1.7 and 6.6 days, respectively. During the 28 days post-dosing, about 27.9% and 3.5% of orally administrated SCCPs were excreted through feces and urine without metabolism, respectively. Congener group abundance profiles indicate a relative increase of Cl5-SCCPs in blood and urine in the elimination stage, and a higher accumulation of Cl8-10-SCCPs in feces. The distribution discrepancies of SCCPs congener groups in blood and excreta were more dependent on chlorine contents than on carbon chain lengths.


Environmental Pollutants/pharmacokinetics , Hydrocarbons, Chlorinated/pharmacokinetics , Paraffin/pharmacokinetics , Absorption, Physiological , Administration, Oral , Animals , Environmental Pollutants/blood , Environmental Pollutants/urine , Feces/chemistry , Half-Life , Hydrocarbons, Chlorinated/blood , Hydrocarbons, Chlorinated/urine , Male , Metabolic Clearance Rate , Rats , Rats, Sprague-Dawley , Tissue Distribution
17.
Environ Sci Technol ; 49(5): 3076-83, 2015 Mar 03.
Article En | MEDLINE | ID: mdl-25660998

Short-chain chlorinated paraffins (SCCPs) have attracted considerable attention for their characteristic of persistent organic pollutants. However, very limited information is available for their toxic effects at environmentally relevant doses, limiting the evaluation of their health risks. In this study, cell viability assay and targeted metabolomic approach was used to evaluate the environmental dose (<100 µg/L) effect of SCCPs on HepG2 cells. Cell viability was found to be decreased with increases in exposure dose of SCCPs. Exposure for 48 h to C10-CPs resulted in a significant reduction in cell viability compared with 24 h, even at 1 µg/L. SCCPs exposure altered the intracellular redox status and caused significant metabolic disruptions. As a kind of peroxisome proliferator, SCCPs specifically stimulated the ß-oxidation of unsaturated fatty acids and long-chain fatty acids. Meanwhile, SCCPs exposure disturbed glycolysis and amino acid metabolism, and led to the up-regulation of glutamate metabolism and urea cycle. The toxic effects of SCCPs might mainly involve the perturbation of energy production, protein biosynthesis, fatty acid metabolism, and ammonia recycling.


Cell Survival/drug effects , Hydrocarbons, Chlorinated/toxicity , Lipid Metabolism/drug effects , Paraffin/toxicity , Hep G2 Cells , Humans , Metabolic Networks and Pathways/drug effects
18.
Oncol Lett ; 8(3): 1246-1248, 2014 Sep.
Article En | MEDLINE | ID: mdl-25120699

Cystic lymphangioma mainly occurs in children. Cystic mediastinal lymphangioma (CML) originates from mediastinal tissues and is an extremely uncommon cystic lymphangioma that develops from the lymphatic vessels. The present study reports the case of 46-year-old male patient with a giant CML that was surgically resected by video-assisted thoracoscopy. The largest diameter of the CML was 18.0 cm, and ~400 ml of pale yellow fluid was removed from the cystic cavity during surgery. The postoperative pathological reports on the cystic wall showed that the neoplasm was a CML. At present, at the one-year postoperative follow-up, there are no signs of recurrence. In conclusion, complete surgical resection may prevent recurrence.

19.
J Exp Bot ; 65(15): 4305-15, 2014 Aug.
Article En | MEDLINE | ID: mdl-24821958

Alternaria alternata (tobacco pathotype) is a necrotrophic fungus causing severe losses in Nicotiana species by infection of mature leaves. Similar to what has been observed in cultivated tobacco, N. tabacum, young leaves of wild tobacco, N. attenuata, were more resistant to A. alternata than mature leaves, and this was correlated with stronger blue fluorescence induced after infection. However, the nature of the fluorescence-emitting compound, its role in defence, and its regulation were not clear. Silencing feruloyl-CoA 6'-hydroxylase 1 (F6'H1), the gene encoding the key enzyme for scopoletin biosynthesis, by virus-induced gene silencing (VIGS) revealed that the blue fluorescence was mainly emitted by scopoletin and its ß-glycoside form, scopolin. Further analysis showed that scopoletin exhibited strong antifungal activity against A. alternata in vitro and in vivo. Importantly, jasmonic acid (JA) levels were highly elicited in young leaves but much less in mature leaves after infection; and fungus-elicited scopoletin was absent in JA-deficient plants, but was largely restored with methyl jasmonate treatments. Consistent with this, plants strongly impaired in JA biosynthesis and perception were highly susceptible to A. alternata in the same way scopoletin/scopolin-depleted VIGS F6'H1 plants. Furthermore, silencing MYC2, a master regulator of most JA responses, reduced A. alternata-induced NaF6'H1 transcripts and scopoletin. Thus, it is concluded that JA signalling is activated in N. attenuata leaves after infection, which subsequently regulates scopoletin biosynthesis for the defence against A. alternata partly through MYC2, and higher levels of scopoletin accumulated in young leaves account for their strong resistance.


Alternaria/physiology , Cyclopentanes/metabolism , Host-Pathogen Interactions , Nicotiana/microbiology , Oxylipins/metabolism , Scopoletin/metabolism , Coumarins/metabolism , Glucosides/metabolism , Sesquiterpenes/metabolism , Nicotiana/immunology , Nicotiana/metabolism , Phytoalexins
20.
J Chromatogr A ; 1343: 33-41, 2014 May 23.
Article En | MEDLINE | ID: mdl-24726373

A simple and fast method for both dummy template selection and polymer composition optimization is proposed here. A series of dummy templates for bisphenols imprinting were screened by running them on a non-imprinted polymer (NIP) column with porogen solvent as mobile phase. The tested dummy templates mainly involved bisphenol S (BPS), bromobisphenol A (TBBPA), bisphenol F (BPF), bisphenol E (BPE), bisphenol B (BPB), bisphenol AF (BPAF), 2,2',6,6'-tetramethyl-4,4'-sulfonyldiphenol (BS-TM) and 4,4'-diaminodiphenylmethane (DADPM). Different monomers and porogens were also investigated for BPS and DADPM using the same method. BPS dummy template was finally selected with acetonitrile and 4-VP as porogen and monomer. The resulting dummy molecularly imprinted polymer (DMIP) achieved superior affinities for BPF, BPE, BPA, BPB and BPAF with imprinting factors 14.5, 13.8, 8.7, 5.7 and 4.2, respectively. An efficient method based on BPS-DMIP-SPE coupled with HPLC-UV was developed for selective extraction of BPF, BPE, BPA, BPB and BPAF in water samples. The method showed excellent recoveries (89.4-102.0%) and precision (RSD 0.3-4.8%, n=5) for tap and river water samples spiked at three concentration levels each (40, 200 and 1000ngL(-1)). The detection limits ranged between 2.2 and 3.8ngL(-1) with a sample volume of 500mL. The result demonstrated the superiority of the optimized method for selective extraction of BPs in water samples at the ngL(-1) level.


Drinking Water/chemistry , Molecular Imprinting/methods , Phenols/analysis , Polymers/chemistry , Rivers/chemistry , Solid Phase Extraction/methods , Water Pollutants, Chemical/analysis , Chromatography, High Pressure Liquid/methods , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Temperature
...